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An object with forces acting on it, but with 
zero net force, is said to be in equilibrium.

12-1 The Conditions for Equilibrium

The first condition for equilibrium:
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12-1 The Conditions for Equilibrium

Example 12-1: 
Chandelier cord tension.

Calculate the tensions A

and B in the two cords 
that are connected to the 
vertical cord supporting 
the 200 kg chandelier 
shown. Ignore the mass 
of the cords.
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12-1 The Conditions for Equilibrium
Example 12-1: 
Chandelier cord tension.
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The second condition of equilibrium is that 
there be no torque around any axis; the choice 
of axis is arbitrary.

12-1 The Conditions for Equilibrium

Although the net force on 
it is zero, the ruler will 
move (rotate). A pair of 
equal forces acting in 
opposite directions but at 
different points on an 
object (as shown here) is 
referred to as a couple.
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12-1 The Conditions for Equilibrium
Conceptual Example 12-2: A lever.

This bar is being used as a lever to pry up a large 
rock. The small rock acts as a fulcrum (pivot point). 
The force required at the long end of the bar can be 
quite a bit smaller than the rock’s weight mg, since it 
is the torques that balance in the rotation about the 
fulcrum. If, however, the leverage isn’t sufficient, and 
the large rock isn’t budged, what are two ways to 
increase the leverage?

One way is to lengthen the lever, 
perhaps with a pipe slid over the 
end as shown. Another way is to 
move the small rock closer to the 
big rock; this increases the ratio of 
the two lever arms considerably.
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1. Choose one object at a time, and make a free-
body diagram by showing all the forces on it 
and where they act.

2. Choose a coordinate system and resolve 
forces into components.

3. Write equilibrium equations for the forces.

4. Choose any axis perpendicular to the plane of 
the forces and write the torque equilibrium 
equation. A clever choice here can simplify the 
problem enormously.

5. Solve.

12-2 Solving Statics Problems
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12-2 Solving Statics Problems
Example 12-3: Balancing a 
seesaw.

A board of mass M = 2.0 kg 
serves as a seesaw for two 
children. Child A has a 
mass of 30 kg and sits 2.5 
m from the pivot point, P 
(his center of gravity is 2.5 
m from the pivot). At what 
distance x from the pivot 
must child B, of mass 25 
kg, place herself to balance 
the seesaw? Assume the 
board is uniform and 
centered over the pivot.
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12-2 Solving Statics Problems
Example 12-3: Balancing 
a seesaw.
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If a force in your solution comes out negative (as

A will here), it just means that it’s in the opposite
direction from the one you chose. This is trivial 
to fix, so don’t worry about getting all the signs 
of the forces right before you start solving. 

12-2 Solving Statics Problems

F

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12-2 Solving Statics Problems

How much force must the biceps 
muscle exert when a 5.0 kg ball is 
held in the hand (a) with the arm 
horizontal, and (b) when the arm is 
at a 45° angle? The biceps muscle is 
connected to the forearm by a 
tendon attached 5.0 cm from the 
elbow joint. Assume that the mass 
of forearm and hand together is 2.0 
kg and their CG is as shown.

Example 12-4: Force exerted by biceps muscle.
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12-2 Solving Statics Problems

How much force must the biceps 
muscle exert when a 5.0 kg ball is 
held in the hand

(a) with the arm horizontal.

Example 12-4: Force exerted by biceps muscle.
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12-2 Solving Statics Problems

How much force must the biceps 
muscle exert when a 5.0 kg ball is 
held in the hand

(b) when the arm is at a 45° angle? 

Example 12-4: Force exerted by biceps muscle.

All forces are the same and all 
distances are reduced by the same 
factor of cos45O which leads to the 
same torque equation, so FM = 400 N 
as in part (a).

If FJ was required use F = 0
FM – FJ – Warm – Wball = 0
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12-2 Solving Statics Problems
Example 12-5: Hinged beam 
and cable.

A uniform beam, 2.20 m long 
with mass m = 25.0 kg, is 
mounted by a small hinge on 
a wall. The beam is held in a 
horizontal position by a cable 
that makes an angle θ = 30.0°.
The beam supports a sign of 
mass M = 28.0 kg suspended 
from its end. Determine the 
components of the force H

that the (smooth) hinge exerts 
on the beam, and the tension 
FT in the supporting cable.

F
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Example 12-5: Hinged beam and cable.
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12-2 Solving Statics Problems

Example 12-6: Ladder.

A 5.0 m long ladder leans 
against a smooth wall at a 
point 4.0 m above a cement 
floor. The ladder is uniform 
and has mass m = 12.0 kg. 
Assuming the wall is 
frictionless (but the floor is 
not), determine the forces 
exerted on the ladder by the 
floor and by the wall.
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12-2 Solving Statics Problems
Example 12-6: Ladder.
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Example 12-6: Ladder.
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12-2 Solving Statics Problems
Example 12-6: Ladder.
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If the forces on an object are such that they 
tend to return it to its equilibrium position, it is 
said to be in stable equilibrium.

12-3 Stability and Balance

Copyright © 2009 Pearson Education, Inc.

If, however, the forces tend to move it away from 
its equilibrium point, it is said to be in unstable
equilibrium.

12-3 Stability and Balance
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An object in stable equilibrium may become 
unstable if it is tipped so that its center of 
gravity is outside the pivot point. Of course, it 
will be stable again once it lands!

12-3 Stability and Balance

Copyright © 2009 Pearson Education, Inc.

People carrying heavy loads automatically 
adjust their posture so their center of mass is 
over their feet. This can lead to injury if the 
contortion is too great.

12-3 Stability and Balance
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Hooke’s law: the change in 
length is proportional to the 
applied force.

12-4 Elasticity; Stress and Strain

Copyright © 2009 Pearson Education, Inc.

This proportionality holds until the force 
reaches the proportional limit. Beyond that, the 
object will still return to its original shape up to 
the elastic limit. Beyond the elastic limit, the 
material is permanently deformed, and it breaks 
at the breaking point.

12-4 Elasticity; Stress and Strain
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The change in length of a stretched object 
depends not only on the applied force, but also 
on its length, cross-sectional area and the 
material from which it is made.

The material factor, E, is called the elastic 
modulus or Young’s modulus, and it has been 
measured for many materials.

12-4 Elasticity; Stress and Strain

Copyright © 2009 Pearson Education, Inc.

12-4 Elasticity; Stress and Strain
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12-4 Elasticity; Stress and Strain

Example 12-7: Tension in piano wire.

A 1.60 m long steel piano wire has a diameter of 
0.20 cm. How great is the tension in the wire if it 
stretches 0.25 cm when tightened?
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E = 200×109 N/m2
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12-4 Elasticity; Stress and Strain

Stress is defined as the force per unit 
area.

Strain is defined as the ratio of the 
change in length to the original length.

Therefore, the elastic modulus is equal 
to the stress divided by the strain:
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In tensile stress, forces 
tend to stretch the 
object.

12-4 Elasticity; Stress and Strain
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Compressional stress is exactly the opposite of 
tensional stress. These columns are under 
compression.

12-4 Elasticity; Stress and Strain
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The three types of stress for rigid objects:

12-4 Elasticity; Stress and Strain

Copyright © 2009 Pearson Education, Inc.

12-4 Elasticity; Stress and Strain

The shear strain, where G
is the shear modulus:
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12-4 Elasticity; Stress and Strain

If an object is subjected to inward forces on 
all sides, its volume changes depending on 
its bulk modulus. This is the only 
deformation that applies to fluids.

or

Copyright © 2009 Pearson Education, Inc.

If the stress on an object is too great, the 
object will fracture. The ultimate strengths of 
materials under tensile stress, compressional 
stress, and shear stress have been measured.

When designing a 
structure, it is a 
good idea to keep 
anticipated stresses 
less than 1/3 to 1/10 
of the ultimate 
strength.

12-5 Fracture
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12-5 Fracture
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12-5 Fracture
Example 12-8: Breaking the piano wire.

A steel piano wire is 1.60 m long with a diameter 
of 0.20 cm. Approximately what tension force 
would break it? d = 0.20 cm = 0.002 m

r = 0.001 m
A = r2 = 3.14×10-6 m2

Tensile Strength = 500×106 N/m2
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A horizontal beam will be under both tensile and 
compressive stress due to its own weight. 
Therefore, it must be made of a material that is 
strong under both compression and tension.

12-5 Fracture
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• An object at rest is in equilibrium; the study 
of such objects is called statics.

• In order for an object to be in equilibrium, 
there must be no net force on it along any 
coordinate, and there must be no net torque 
around any axis.

• An object in static equilibrium can be in 
stable, unstable, or neutral equilibrium.

Summary of Chapter 12
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• Materials can be under compression, tension, 
or shear stress.

• If the force is too great, the material will exceed 
its elastic limit; if the force continues to increase, 
the material will fracture.

Summary of Chapter 12


