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Units of Chapter 11

* Angular Momentum—Objects Rotating About a
Fixed Axis

» Vector Cross Product; Torque as a Vector
» Angular Momentum of a Particle

* Angular Momentum and Torque for a System of
Particles; General Motion

» Angular Momentum and Torque for a Rigid
Object

» Conservation of Angular Momentum

* The Spinning Top and Gyroscope

11-1 Angular Momentum—Objects
Rotating About a Fixed Axis

The rotational analog of linear momentum
is angular momentum, L:

. = lw,

Then the rotational analog of Newton’s
second law is:

dL

dt

This form of Newton’s second law is valid
even if I is not constant.

2T =
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11-1 Angular Momentum—Objects
Rotating About a Fixed Axis

In the absence of an external torque,
angular momentum is conserved:

a =0and L = low = constant.

dt
More formally,

the total angular momentum of a
rotating object remains constant if the
net external torque acting on it is zero.

11-1 Angular Momentum—Objects
Rotating About a Fixed Axis
This means:

o = Iyw, = constant.

Therefore, if an object’s moment of inertia
changes, its angular speed changes as well.

CDEznght © 2009 Pearson Education, Inc.




11-1 Angular Momentum—Objects Rotating
About a Fixed Axis

o = Iyw, = constant.
1 large, 1 small, “ ;
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A skater doing a spin on ice, illustrating conservation of
angular momentum: (a) / is large and o is small; (b) I is
smaller so o is larger.

A diver rotates faster when arms and legs are tucked in
than when they are outstretched.

opyright © 2009 Pearson Education, Inc.

Conservation of Angular Momentum
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11-1 Angular Momentum—Objects
Rotating About a Fixed Axis

Example 11-1: Object rotating on a string of changing
length.

A small mass m attached to the end of a string revolves in a
circle on a frictionless tabletop. The other end of the string
passes through a hole in the table. Initially, the mass
revolves with a speed v, = 2.4 m/s in a circle of radius

R, = 0.80 m. The string is then pulled slowly through the
hole so that the radius is reduced to R, = 0.48 m. What is
the speed, v,, of the mass now?

-
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11-1 Angular Momentum—Objects Rotating
About a Fixed Axis
For small mass: | = mr?2

Conservation of Angular Momentum: o = lyo,

Lmrio=mrio, > r‘o=ro,

Vv
&vVv=ro — w=-— V=V,
r
r2 r.2 ro:R1:0.80m
. v _ 0 VO _
e T — V=1V r=R,=048m
r I,
rv, 0.80x2.4 Lt s
"' V2 :V: O O = :4-0 m/S ‘?ir ;;"l‘-'r‘["’ 4
r 0.48 _
ey
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11-1 Angular Momentum—Obijects
Rotating About a Fixed Axis

Example 11-2: Clutch.

A simple clutch consists of two cylindrical plates

that can be pressed together to connect two

sections of an axle, as needed, in a piece of

machinery. The two plates have masses M, = 6.0 kg

and My = 9.0 kg, with equal radii R, = 0.60 m. They
are initially separated. Plate M, is accelerated from

rest to an angular velocity o, = 7.2 rad/s in time

At = 2.0 s. Calculate (c) Next, plate My, initially at rest “so0——os
but free to rotate without friction, is placed in firm W)
contact with freely rotating plate M,, and the two

plates both rotate at a constant angular velocity ,,

which is considerably less than «,. Why does this

happen, and what is »,?

Copyright © 2009 Pearson Education, Inc.

11-1 Angular Momentum—Obijects
Rotating About a Fixed Axis

Example 11-2: Clutch.

A simple clutch consists of two cylindrical plates

that can be pressed together to connect two

sections of an axle, as needed, in a piece of

machinery. The two plates have masses M, = 6.0 kg

and My = 9.0 kg, with equal radii R, = 0.60 m. They
are initially separated. Plate M, is accelerated from

rest to an angular velocity o, = 7.2 rad/s in time

At = 2.0 s. Calculate (a) the angular momentum of M, “se0—

w
L=lw

6.0x0.6°

_1 2 _
IA_EMARA—

=1.08 kg.m’

o L=lw=1.08x7.2=7.8kg.m?/s

Copyright © 2009 Pearson Education, Inc.
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11-1 Angular Momentum—Objects
Rotating About a Fixed Axis

Example 11-2: Clutch.

A simple clutch consists of two cylindrical plates

that can be pressed together to connect two

sections of an axle, as needed, in a piece of

machinery. The two plates have masses M, = 6.0 kg

and M = 9.0 kg, with equal radii R, = 0.60 m. They .

are initially separated. Plate M, is accelerated from

rest to an angular velocity o, = 7.2 rad/s in time

At = 2.0 s. Calculate (b) the torque required to have ‘“s—8
accelerated M, from rest to o, @y

r=la &w=0,+at
w-w, 1.2-0
At 2

ST7=la=7.8%x3.60=3.9N.m

CDEzngh( © 2009 Pearson Education, Inc.

La= =3.60 rad/s?

11-1 Angular Momentum—Objects
Rotating About a Fixed Axis

Example 11-2: Clutch.

Calculate (c) plate My, initially at rest but free to

rotate without friction, is placed in firm contact with
freely rotating plate M,, and the two plates both

rotate at a constant angular velocity w,, which is
considerably less than o,. Why does this happen,

i ? .
and what is w7 Angular momentum is conserved

(this is a rotational collision) .
6.0%x0.6° W)
I, =+M,R; == =1.08 kg.m?
9.0x0.6°
lg =tM R ==——"—"—=1.62kg.m’

NCN =(IA + IB)a)B

oo a0y _108x72 o

o, 41, 1.08+1.62

CDEzngh( © 2009 Pearson Education, Inc.

16/05/2012



11-1 Angular Momentum—Objects
Rotating About a Fixed Axis

Example 11-3: Neutron star.

Astronomers detect stars that are rotating extremely
rapidly, known as neutron stars. A neutron star is
believed to form from the inner core of a larger star
that collapsed, under its own gravitation, to a star of
very small radius and very high density. Before
collapse, suppose the core of such a star is the size of
our Sun (r = 7 x 105 km) with mass 2.0 times as great as
the Sun, and is rotating at a frequency of 1.0 revolution
every 100 days. If it were to undergo gravitational
collapse to a neutron star of radius 10 km, what would
its rotation frequency be? Assume the star is a uniform
sphere at all times, and loses no mass.

CDEzngh( © 2009 Pearson Education, Inc.

11-1 Angular Momentum—Objects
Rotating About a Fixed Axis

Example 11-3: Neutron star.

r, = 7x10° km
@, =1rev/100 days
= L =1.16x10"" rev/s
100x 24 x 3600
r=10km
lo= 1w,
.o 2mr? r\
W= _|5 026002—0 oy
I Zmr r
7x10° )
:[ j x1.16x10"" =568 ~ 600 rev/s
M © 2009 Pearson Education, Inc.
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11-1 Angular Momentum—Obijects
Rotating About a Fixed Axis

Angular momentum is a
vector; for a symmetrical
object rotating about a
symmetry axis it is in the (A

same direction as the @M_RQ

angular velocity vector. — ——

Angular momentum points along the axis i,
of rotation in a direction given by the right t person
hand rule. — Fingers curl in the direction of l_
rotation — Thumb points in direction of platform
angular momentum vector

11-1 Angular Momentum—Obijects
Rotating About a Fixed Axis

Example 11-4: Running on a circular platform.

Suppose a 60 kg person stands at the edge of
a 6.0 m diameter circular platform, which is
mounted on frictionless bearings and has a
moment of inertia of 1800 kg-m2. The platform
is at rest initially, but when the person begins
running at a speed of 4.2 m/s (with respect to
the Earth) around its edge, the platform
begins to rotate in the opposite direction.
Calculate the angular velocity of the platform.

16/05/2012



Example 11-4: Running on a circular platform.

V=ro—>wo=Vlr — mr2
66(()) k @ Iperson =mr
m= g 5
I =1800 kg.m
r :30 m platform g
v=4.2m/s Lperson = Ipersona) mr (V/r) mrv

Conservation of Angular Momentum
Total L is zero

L= LPerson + I‘platform -":—_-:_____________ E RS - ___} -___-_-_;____:,..
0=mrv- Iplatforma)
o~
o MV _60x30x042 o o !
I platform 1800 l[p!;”mm'

Note: w=27f =272/T > T =2x/w=15s per revolution

CDEzngh( © 2009 Pearson Education, Inc.

11-1 Angular Momentum—Objects
Rotating About a Fixed Axis

Conceptual Example 11-5: i'.'
Spinning bicycle wheel. ﬁ

Your physics teacher is holding %}

a spinning bicycle wheel while

he stands on a stationary
frictionless turntable. What will
happen if the teacher suddenly
flips the bicycle wheel over so ¢~

that it is spinning in the |

opposite direction?

16/05/2012
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Conceptual Example 11-5: Spinning bicycle wheel.

Angular momentum is
conserved, so the person will
start spinning in the direction
the wheel was spinning
originally.

Click

image ) ®
to play

video

Initially, we have

Lsystem =L, (upward)
After the wheel is inverted,
L =L,=L

system

+L

person+turntable wheel

In this case L, ., =-L,
(rotating in opposite direction)
~ Ly=L

L

person+turntable ~ "0

2L

person-+turntable ~ <0

This shows that the person and turntable
will rotate in the same direction as the
original direction of the wheel and with
an angular momentum equal to twice the
initial angular momentum of the wheel.

Copyright © 2009 Pearson Education, Inc.
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11-2 Vector Cross Product; Torque as a
Vector

The vector cross product is defined as:

C = |AXB| = ABsiné.

The direction of the cross product is
defined by a right-hand rule:

C=AxB

11-2 Vector Cross Product; Torque as a
Vector

The cross product can also be written in
determinant form:

i
AxB = |A, A, A
B, B, B

Z

= (AyB, — A;B))i + (A B, — AB,)j + (AcBy — A,B,)k.

16/05/2012
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11-2 Vector Cross Product; Torque as a
Vector

Some properties of the cross product:
AXA =0

AXB =
Ax(B+C) = (
d d
dt

E)
/D:l
X
@l

(AXB) = —XB + A X—-

11-2 Vector Cross Product; Torque as a
Vector
Torque can be defined as the vector
product of the force and the vector from
the point of action of the force to the axis
of rotation: -
7 =1 XF
F
Using the right hand rule P \J?y/
shows that the torque 3 e
vector points along the : 0/
axis of rotation and is out Wi
of the page. '

16/05/2012
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11-2 Vector Cross Product; Torque as a
Vector

For a particle, the torque can be defined
around a point O:
7 =1 XF,

Here,r is the position vector from the
particle relative to O.

¥

) X

\

Example 11-6: Torque vector.

Suppose the vectorf is in the xz plane, and is
given by I = (1.2 m) i + 1.2 m)k. Calculate the
torque vector T if F = (150 N) i.

—

%= i xF =(1.21+1.2k 150
=180 N.m
le. Tisin ydirection

Il
-
X
S

Note : ixf: 0

fxic

16/05/2012
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11-3 Angular Momentum of a Particle

The angular momentum of a particle about
a specified axis is given by:

L =1 Xp.

COEzngh( © 2009 Pearson Education, Inc.

11-3 Angular Momentum of a Particle

If we take the derivative of I:, we find:

dL _dp

— = F X —-

dt dt

_ dp dL
Si rx2F = rfr X — = —,
ince r r ” ”
we have: X7 = d—L

dt

This is the rotational analogue of Newton’s 2" Law

COEzngh( © 2009 Pearson Education, Inc.
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11-3 Angular Momentum of a Particle

Conceptual Example 11-7: A particle’s
angular momentum.

What is the angular momentum of a
particle of mass m moving with speed v in
a circle of radius r in a counterclockwise

direction?

— N

LZFXf)fomV i N
L is directed outwards perpendicular
to both r and v (RH Rule) {

. \
L=rmvsin90°=rmro=mr’o=Ilo \_ ,

CDEzngh( © 2009 Pearson Education, Inc.

11-4 Angular Momentum and Torque for
a System of Particles; General Motion

The angular momentum of a system of
particles can change only if there is an
external torque—torques due to internal
forces cancel.

dL }
I = E Text -
This equation is valid in any inertial

reference frame. It is also valid for the
center of mass, even if it is accelerating:

dL CM

CDEzngh( © 2009 Pearson Education, Inc.
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11-5 Angular Momentum and Torque for
a Rigid Object

For a rigid object, we can show that its

angular momentum when rotating
around a particular axis is given by:

L, = low.

11-5 Angular Momentum and Torque for
a Rigid Object

Example 11-8: Atwood’s machine. _
'Ry Rp )\
An Atwood machine consists of two Fo U
masses, m, and my, which are
connected by an inelastic cord of
negligible mass that passes over a
pulley. If the pulley has radius R, and
moment of inertia 7 about its axle,
determine the acceleration of the s
masses m, and mg, and compare to ng

=

m A

the situation where the moment of lmBg

inertia of the pulley is ignored.

16/05/2012
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The angular momentum about O is
L=L
=lw+R,m,Vv+RymgVv
Alsow=VIR,

Example 11-8:

+ Ly, + Lo, Atwood’s machine.

pulley

g0r, oW
v o
L= (mA + mB)\/RO +?

0
The external torque about O is
7=mygR,-m,gR, (takingclockwiseas+ve) i
_dL
o -
dv. | dv ‘ .| mg
M

(mB_mA)gRO = (mA + Mg )ROEJFR_OE ﬂ
mgg

T

a

a:ﬂ: (mB_mA)g
dt  (m,+mg)+1/R2

Copyright © 2009 Pearson Education, Inc

a— dv B (mB—mA )g Example 11-8:

dt (mA + mB)_|_ |/R02 Atwood’s machine.

If the moment of inertia of the pulley BT R
is ignored we get L o
L v _ (mg—m, )g

dt  (m,+m;)

Which is the same result as for the ideal
acceleration in experiment E1 Mechanics
and Forces where the effect of the pulley e
was ignored (pulley assumed to have Ln,.\'g a
negligible mass). E _
mgg

HII'A

The effect of the moment of inertia of the
pulley is to slow down the system.

Copyright © 2009 Pearson Education, Inc
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11-5 Angular Momentum and Torque for
a Rigid Object

Conceptual Example 11-9: Bicycle
wheel.

Suppose you are holding a bicycle

wheel by a handle connected to its rowuion
axle. The wheel is spinning rapidly o=
so its angular momentum points ™/ |
horizontally as shown. Now you Rl
suddenly try to tilt the axle upward

(so the cm moves vertically). You

expect the wheel to go up (and it

would if it weren’t rotating), but it
unexpectedly swerves to the right!

Explain.

CDEzngh( © 2009 Pearson Education, Inc.

Conceptual Example 11-9: Bicycle wheel.

Rotation axis

(about an axis through your wrist) ko lifting

wheel
that points along the x axis perpendicular to L
SoAL =% At
AL points (approximately) along the x axis
Since L is directed along the axis of the wheel
the axle is now pointing in the direction of L + AL
ie. the axle veers to the right

CDEzngh( © 2009 Pearson Education, Inc.

4T> d i |
=77 Rotati
et d t a;il\d:{?rn—- -4, g0 v
) spinning [ |
In the short time At you exert a net torque ~ wheel |

16/05/2012
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11-6 Conservation of Angular Momentum
If the net torque on a system is constant,

dL

at [=7 = 0]
dt

= () and L = constant.

The total angular momentum of a system
remains constant if the net external torque
acting on the system is zero.

This is just the vector form of the result in section 11-1

NB: L = Iw is ONLY valid if the rotational axis is along a
symmetry axis through the centre of mass.

CDEznght © 2009 Pearson Education, Inc.

11-6 Conservation of Angular Momentum

Example 11-11: Kepler’s second law
derived.

Kepler’s second law states that each planet
moves so that a line from the Sun to the
planet sweeps out equal areas in equal
times. Use conservation of angular
momentum to show this.

Planet

vt sin 6

CDEznght © 2009 Pearson Education, Inc.
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Example 11-11: Kepler’s second law derived.
In time dt the planet moves a distance vdt
and sweeps out an area dA equal to the area
of the triangle shown dA = (r)(vdtsin &)

Planet

dA :
—=3rvsingd
dt vdtsin @

The magnitude of the angular momentum about the Sun is

. q ) ] L
L=|r><mv|=rmvsm9 — rvsind=—
m

aA_ srvsing = L
dt 2m
Since the gravitational force F is directed towards the Sun

. - dA .
it produces no torque so L is constant — E IS constant

CDEznght © 2009 Pearson Education, Inc.

11-6 Conservation of Angular Momentum

Example 11-12: Bullet strikes cylinder edge.

A bullet of mass m moving with velocity v strikes and
becomes embedded at the edge of a cylinder of mass
M and radius R,. The cylinder, initially at rest, begins
to rotate about its symmetry axis, which remains fixed
in position. Assuming no frictional torque, what is the
angular velocity of the cylinder after this collision? Is
kinetic energy conserved?

CDEznght © 2009 Pearson Education, Inc.
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Example 11-12: Bullet strikes cylinder edge.

Initial L, is that of bulletonly: L, = R,mv
Final L is due to bullet + cylinder
|, = mMR; l. =1 MR;
L=lo=(1y+I)o=(MR2+i MR )w=(1M +m)R2e
Applying conservation of angular momentum

mv
(M +m)R,
This is an inelastic collision - Kinetic energy is not conserved

AM+mRZw=Rmv - o=

CDEznght © 2009 Pearson Education, Inc.

11-7 The Spinning Top and Gyroscope

A spinning top will
precess around its
point of contact with
a surface, due to the
torque created by
gravity when its axis
of rotation is not
vertical.

CDEznght © 2009 Pearson Education, Inc.
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11-7 The Spinning Top and Gyroscope
The angular velocity of the precession is
given by:

Mgr

[w

Q =

This is also the ﬁi\\
angular velocity of
precession of a toy
gyroscope, as shown.

CDEznght © 2009 Pearson Education, Inc.

The Gyroscope and Precession

The term gyroscope, refers to any rotating body that exhibits two
fundamental properties: gyroscopic inertia, or “rigidity in space”,
and precession, the tilting of the axis at right angles to any force
tending to alter the plane of rotation.

The term gyroscope is commonly applied to spherical, wheel-
shaped, or disc-shaped bodies that are universally mounted, so as
to be free to rotate in any direction; they are used to demonstrate
these properties or to indicate movements in space.

The prefix gyro is customarily added to the name of the
application, as, for instance, gyrocompass, gyrostabilizer, and
gyropilot.

CDEznght © 2009 Pearson Education, Inc.
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Outer ring

support
e 34 Flywheel

Axle

= 3— Bearing

Inner ring =

\ W

/E“
Outer ring :

Copyright © 2009 Pearson Education, Inc

The rigidity in space of a gyroscope is a consequence of Newton’s first law
of motion, which states that a body tends to continue in its state of rest or
uniform motion unless subject to outside forces. This is also an example of
conservation of angular momentum. Thus, the wheel of a gyroscope,
when started spinning, tends to continue to rotate in the same plane about
the same axis in space.

An example of this tendency is a spinning top, which has freedom about
two axes in addition to the spinning axis.

Another example is a rifle bullet, which, because it spins in flight, exhibits
gyroscopic inertia, tending to maintain a straighter line of flight than it
would if not rotating.

Gyroscopes constitute an important part of automatic-navigation or
inertial-guidance systems in aircraft, spacecraft, guided missiles, rockets,
ships, and submarines. The inertial-guidance instruments in these
systems comprise gyroscopes and accelerometers that continuously
calculate the exact speed and direction of the craft in motion. These
signals are fed into a computer, which records and compensates for
course changes.

16/05/2012
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Precession of a Gyroscope

A simple gyroscope consists of a wheel rotating about an axis as
shown below. If the wheel were not rotating, the torque produced
by Mg would cause the wheel to fall downwards. Note that the
directions of all vectors of rotation are given by the right hand rule.
Since the wheel is rotating the torque produced by
the rotational form of :

—

Newton’s Law: %:dd—L > dL=dt |
t ¥ s

This shows us that the change in angular momentum (di)
produced by the torque

T=fxF — 7r=MgD as 6=90°

attempting to rotate the wheel downwards is in the direction of the
torque, ie. in the horizontal plane. This causes the wheel to rotate
about a vertical axis, a motion which is called precession.

CoExnghl © 2009 Pearson Education, Inc.

When the wheel is spinning with a large
initial angular momentum L along the axle, the change
in the angular momentum dL is perpendicular to L,
and the axle moves in the direction of the torque. This
motion is called precession.

In the small time interval dt the changein L is
dL=7-dt=MgD-dt

Theangledg = dTL = MgD-dt

L
The angular velocity of presession is:
Q- dg _ Mgb
dt L
M © 2009 Pearson Education, Inc.
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Demonstration of Gyroscope and Precession

Click image to show video

A Simple Toy Gyroscope

26



16/05/2012

Demonstration of Gyroscope and Precession

Click images to
show video

Demonstration of Gyroscope and Precession

Click image to show video
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Summary of Chapter 11

* Angular momentum of a rigid object:

L = lw,
* Newton’s second law:

dL
2T = .

dt
sAngular momentum is conserved.
* Torque:

7 =¥ XF

Summary of Chapter 11

* Angular momentum of a particle:

* Net torque: N

dL

dt

* If the net torque is zero, the vector
angular momentum is conserved.

SF =

16/05/2012
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